Tuesday, January 19, 2016

Quantifying Weirdness

Quantum mechanics is weird; there's no doubt about that. It’s got wave-particle duality, the uncertainty principle, and spooky action at a distance. Other fields have weird results, too, but although we might comment on the peculiarity of a particular finding, we do not indict other fields as a whole. With quantum mechanics in particular, though, it seems like its idiosyncrasies leave people with the feeling that it is either too weird to be right or too weird to be understood.

Well, today I'd like to help dispel those attitudes, particularly the first one—or at the very least put a number on just how weird quantum mechanics is. To do so, I'm going to be regurgitating material I learned in my philosophy of physics course.

In order to quantify the weirdness of quantum mechanics, we'll be exploring the phenomenon of quantum entanglement. Hopefully, we'll be able to unravel some of its mysteries and not get caught in a web of confusion.

I'm sorry, I promise there will be no more entanglement puns.

Entanglement first gained widespread awareness in physics after a 1935 paper by Einstein, Podolsky, and Rosen, henceforth known as the EPR paper. Einstein was unhappy with how that paper turned out, but he articulated his thoughts more clearly to his colleagues (especially Schrodinger) in private. Additionally, the thought experiment proposed then was more complicated than it had to be. The upshot is I'll be talking about this from a slightly more modern perspective; but historically, the EPR paper is one of the jumping off points for discussing quantum funny business.

So here's entanglement. In quantum mechanics, particles like electrons are described by a wave function which tells you the probability of finding the electron in a particular state. One such state is spin which, because of weird quantum mechanical reasons, can be either up or down. So the wave function could say there's a 50% chance the spin is up and a 50% chance it's down, for example.

You won't know what the spin is until you measure it. When you do so, the language is that the wave function “collapses,” so now it's just in one state, either up or down, instead of a superposition of both.

If two electrons are hanging out, normally you have two wave functions to keep track of. But if two electrons get created together in a particular process, then they will be described by a single wave function. Once that happens, barring interference from the outside world, it is not possible to decompose that wave function into two separate ones.

Where before your wave function for a single electron said there was a 50/50 chance of spin-up or spin-down, now it might say something like there is a 50% chance that electron A is spin-up and electron B is spin-down, and a 50% chance that electron A is spin-down and electron B is spin-up. So if electron A is in your lab, and electron B is down the road at the chemist, and you measure electron A to be spin-up, then you know the wave function has collapsed to "A up, B down." This means you also know, without having measured it, that electron B is now spin-down. If you do later measure it, you will always find it to be spin-down if A was up.

Here's where things get weird. Again, as long as you prevent your electrons from being interfered with, they remain entangled until you measure the spin of one of them, no matter how far apart the electrons get. So if electron A is in your lab, and you send electron B to Alpha Centauri, when you measure the spin of electron A, you instantly know, across a distance that would take light 4 years to travel, what the spin of electron B is.

This is weird.

Here's another scenario. This one is totally going to blow your mind. Imagine you are playing a game with a street magician. He's got two hands and one coin. While your back is turned, he puts the coin in one of his hands and then asks you to guess where the coin is. There's a 50/50 chance for either hand. You say left hand. He opens, and reveals that there is no coin there.

Now here's the wacky part. Assuming the magician exhibits no trickery and that the coin is in one of his hands, you now know, as if by magic, that the coin is in his right hand. Even if the magician performs some real magic and sends his right hand to Alpha Centauri after hiding the coin, you know instantly, across a distance that would take light 4 years to travel, that the coin is in his right hand. Information has traveled faster than light—a clear violation of Einstein's special relativity!

Okay, no matter how hard I try, I can't make that second scenario sound as weird as the first one. But why not? Because you're saying, “Silly Ori Vandewalle (if that even is your real name), nothing spooky is going on here. The coin's location is a result of the magician's actions before the hands are separated. Revealing the hand doesn't decide the fate of the coin. Duh.”

This is essentially the argument that Einstien made in the EPR paper. If two electrons are entangled, and one of them is sent to Alpha Centauri, and measuring the spin of one tells you the spin of the other, then the only reasonable conclusion you can draw is that the spins were determined beforehand.

The name of the EPR paper is, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" Following Betteridge's law, Einstein posited the answer was no. That's because quantum mechanics can only tell you the probability of the electron's spin being up. But just as with the magician's coin, Einstein argued, this probability represents nothing more than our ignorance, not any actual indeterminacy on the part of the coin or the electron.

So is the weirdness gone?

Well, let's see if we can't make this spooky action even more mundane. Another way to think of this result is that the two electrons are correlated. If two objects are correlated, they have a common cause. A caused B, or B caused A, or C caused both A and B. So we are suggesting that some common cause configured both spins beforehand but didn't bother to tell the wave function this.

In the 60s, physicist John Stewart Bell developed a theorem that must be true about any three binary properties of a single system. This theorem tells us something important about common causes. There are a few assumptions that go into the theorem, the most relevant of which is that, once you measure property A, that measurement can't affect properties B and C before you measure them.

Let's go through Bell's theorem with cookies so that I can distract you from the fact that we're doing math.

By Kimberly Vardeman from Lubbock, TX, USA (Perfect Chocolate Chip Cookies) [CC BY 2.0], via Wikimedia Commons
Say you've baked a batch of cookies, and the cookies can be large or not large (L, ~L), have walnuts or no walnuts (W, ~W), and have chocolate chips or no chocolate chips (C, ~C). Now say you want to know how many large, non-walnut cookies you have. We'll call that N(L, ~W). This number is the sum of all large, non-walnut, chocolate chip cookies N(L, ~W, C) and all large, non-walnut, non-chocolate chip cookies N(L, ~W, ~C). This must be true, because whether or not a cookie has chocolate chips does not affect its size or walnut content.

Similarly, the number of cookies with walnuts but no chocolate chips is N(L, W, ~C) + N(~L, W, ~C) because size doesn't matter. And finally, the number of large, non-chocolate chip cookies is N(L, W, ~C) + N(L, ~W, ~C) because walnuts don't matter.

Now let's add together the number of large, non-walnut cookies and the number of walnut cookies with no chocolate chips. That quantity is:

N(L, ~W, C) + N(L, ~W, ~C) + N(L, W, ~C) + N(~L, W, ~C)

If you notice, the second and third terms are also the terms for the number of large, non-chocolate chip cookies. That means our sum is always at least as great as the number of large, non-chocolate chip cookies.

Now let's make a slight shift and talk instead about probabilities. If you randomly reach out for a cookie, the probability that you get a particular one is directly proportional to the number of that cookie there is to take. This means we can reword Bell's cookie theorem thusly:

The probability of choosing a large, non-walnut cookie or a walnut, non-chocolate chip cookie is always greater than or equal to the probability of choosing a large, non-chocolate chip cookie.

This theorem is true regardless of how many of each cookie there actually is, because at no point in demonstrating this did we use numbers. It's also true no matter what kinds of properties we're talking about, so long as they are binary properties, because we could just as easily say L stands for lemon cookies or even something non-cookie-related.

But what's more, this theorem tells us about correlations. You see, if I give instructions to a thousand people to bake exactly the number of cookies I say and have each person randomly select and eat one cookie, we'll find that Bell's cookie theorem holds true. The probabilities will be maintained across all kitchens, because the cookie batches are correlated--spooky baking at a distance. The correlation is a result of the common cause known as me giving out instructions.

Now let's switch gears and talk about sunglasses—or as I prefer to call them, quantum shields. Polarized sunglasses only admit light that oscillates in a particular direction (up and down or left and right, for example). If you have horizontally polarized sunglasses, then only light waving from left to right (from the frame of the frames) will get through. But light coming from the sun is equally likely to be waving in any direction, so if you think about it, polarized sunglasses should only let a tiny, infinitesimal amount of light through—only light that is exactly horizontal and nothing at any other angle. Yet this isn't what happens. Polarized sunglasses will absorb roughly half the incident light and let the rest pass. Why is that?

Well, let's talk about the quanta of light, photons. A single photon doesn't have a direction it's waving, but it does have a polarization that is based on its spin. When a photon passes through sunglasses, the photon's spin is measured by the polarizing filter. Before the measurement, it's in a superposition of horizontal and vertical spin based on the angle of its spin (the direction it's waving).

When it's measured, that superposition collapses so that its spin is either horizontal or vertical. If it ends up being horizontal, it passes through. Otherwise, it's absorbed. The closer the angle of its spin is to horizontal, the higher the probability that it collapses to a horizontal spin. In this way, light from any polarization (except exactly vertical) can pass through, but the odds of it doing so go down the further away from horizontal you get, and anything that does pass through will subsequently be measured as horizontal. So sunglasses are quantum shields.

"Oakley half wire" by Jpogi at en.wikipedia.com. Licensed under Public Domain via Commons
This probability of getting a particular spin works for electrons, too, such as the two entangled ones in our EPR thought experiment. Instead of a polarizing filter, we use magnets to measure an electron’s spin. Before we talked about a 50/50 chance of an electron being up or down, but these odds can be adjusted by rotating our magnets in exactly the same way that light waves rotated away from horizontal have different odds of passing through sunglasses.

But this adds a new wrinkle to our thought experiment. Before, getting a spin-up on Earth meant the Alpha Centauri electron would be spin-down 100% of the time. If we rotate the Earth magnet by some angle θ, then that perfect correlation stops being 100%. It turns out that the odds of one being spin-up and the other spin-down are equal to cos2(θ/2), where θ is the angle between the two magnets.

We can carry out this experiment many times, creating entangled electrons and sending them to Alpha Centauri. A third of the time, we can measure with one magnet oriented at 0 degrees and the other at θ degrees clockwise, a third with one θ degrees and the other φ degrees, and a third with one 0 degrees and the other φ degrees. In this way, we are measuring three different binary properties of the system. Bell's theorem applies.

An entangled pair can be spin-up at 0 degrees and spin-down at θ degrees, spin-up at θ degrees and spin-down at φ degrees, or spin-up at 0 degrees and spin-down at φ degrees.

Bell's theorem tells us, then, that P(θ) + P(φ-θ) >= P(φ). Using the cosine formula up there, this comes out to cos2(θ/2) + cos2([φ- θ]/2) >= cos2(φ). Okay. Looks fine.

Except this isn't always true, depending on the angles you pick. Sometimes, the left-hand side will be less than the right-hand side. If you subtract the right from the left, then whenever Bell’s inequality is violated, the expression will be negative. You can see when that happens in this graph.

I am a Matlab Master.
So what does it mean for Bell’s inequality to be violated? Well, in the case of our cookies, the correlation was upheld because I sent out a common set of instructions to all the bakers. This is the common cause of the correlation. We saw that this common cause would lead to adherence to Bell's inequality for any set of three, binary properties of a system. This means that a common cause cannot be the origin of the correlation between entangled electrons. They aren’t deciding their configuration beforehand.

What Bell's theorem does permit is a non-local connection—the electrons instantly updating each other on their spin, or electrons that are governed by interactions across all of space. The other usual possible explanation for EPR and Bell is that electrons don't have any intrinsic reality, that realism itself is a foolish idea. No one likes either of these possibilities.

There are alternative ways of deriving, formulating, and generalizing Bell's theorem. When you do so via the CHSH inequality, you find that classical correlations can be no higher than 2. But quantum correlations violate this limit and can be as high as 2√2. And yet we can imagine other correlations, such as the Popescu-Rohrlich box, that are even higher than 2√2—correlations that you cannot reach even with entangled, non-local/non-real electrons.

So quantum mechanics is weird. But it's only weirder than regular spooky action at a distance by a factor of √2, or ~41%. Although √2 is irrational, so maybe quantum mechanics is unreasonably weird.

No comments:

Post a Comment